Peningkatan Kualitas Pasir Silika Lokal Asal Sidrap sebagai Pasir Standar untuk Pengujian Mutu Semen

Wieke Pratiwi, Gaos Abdul Karim, Titi Rachmawati


Silica sand from Sidrap, South Sulawesi has been processed to substitute for Ottawa sand as a standard sand in testing of cement quality. The main processing was milling in a 3.5 L replica ball mill made of 2 mm steel with a rotational speed of 30 rpm for 30 minutes. Milling was carried out using ceramic or steel grinding balls with diameters of 13 and 17 mm. This milling resulted the following cumulative particle size distribution: 9.6% (+18, retained in 18 mesh sieve), 66.0% (+35), 11.6% (+50), 7.2% (+100), 3.6% (+170) and 2.0% passed through 170 mesh sieves. This particle size distribution  was more or less similar to that obtained from a standard laboratory ball mill having the same dimensions. This particle size distribution also met that the standard sand for the testing of cement quality. Milling caused a surface abrasion of Sidrap sand particles resulting a change in roundness (representing the smoothness of the surface). Milling of Sidrap sand using this replica ball mill gave a roundness of 0.27 (using ceramic milling balls), and 0.24 (steel balls), while Ottawa sand as a comparison has a roundness in the range of 0.27 - 0.30.


Pasir silika asal Sidrap, Sulawesi Selatan telah diolah untuk dijadikan pengganti pasir Ottawa sebagai pasir standar untuk pengujian mutu semen. Pengolahan utama adalah penggerusan di dalam sebuah ball mill replika volum 3,5 L yang dibuat dari baja 2 mm dan kecepatan putar 30 rpm selama 30 menit. Penggilingan dilakukan dengan bantuan bola-bola penggerus dengan diameter 13 dan 17 mm dari bahan keramik atau bola baja. Penggerusan ini berhasil menjadikan pasir Sidrap memiliki distribusi ukuran partikel kumulatif sebagai berikut 9,6% (+18, tertahan pada ayakan 18 mesh), 66,0% (+35), 11,6% (+50), 7,2% (+100), 3,6% (+170) dan 2,0% lolos ayakan 170 mesh. Distribusi partikel hasil penggerusan dengan ball mill replika ini mirip dengan yang dari standard laboratory ball mill dengan dimensi sama. Distribusi ukuran partikel ini juga memenuhi distribusi ukuran partikel pasir standar untuk pengujian mutu semen. Penggerusan juga menghasilkan abrasi permukaan partikel pasir Sidrap, sehingga terjadi perubahan roundness (indeks kebundaran) yang mencerminkan kemulusan permukaan. Penggerusan dengan ball mill replika menghasilkan indeks kebundaran 0,27 (dengan bola penggerus keramik), dan 0,24 (bola baja), sedangkan pasir Ottawa sebagai pembanding memiliki indeks kebundaran antara 0,27 – 0,30.


milling, particle size distribution, milling ball, replica ball mill

Full Text:



Pratiwi, W, Abdul Karim, G, Rachmawati, T, “Pemanfaatan Pasir Silika sebagai Bahan Pengganti Pasir Standar Ottawa untuk Pengujian Mutu Semen Nasional”, Laporan Akhir, Balai Besar Bahan dan Barang Teknik, 2015

Bond, F.C., “Crushing and Grinding Calculations (Part I No 6, 378-385 and Part II, No 8, 543-548)”, British Chemical Engineering, Vol. 6, 1961.

Kimura M., Narumi M., Kobayashi T., “Design Method of Ball Mill by Discrete Element Method”, Sumitomo Chemical CO. Ltd., Tokyo, 2007.

Monov, V., Sokolov, B., Stoenchev, S., “Grinding in Ball Mills: Modelling and Process Control”, Institute of Information and Communication Technologies, Sofia, 2012.

Amin, A.F.M.S., M.M. Haque, M.Z.R. Siddiqi, M.A. Rahman, M.S. Islam, A.A. Rana, M.M. Karim, and M.K. Alam, “Use of selected Silica Deposits of Bangladesh as Sandard Sand in Testing Compressive Strength of Hydraulic Cement Mortars: A Proposal for Strength Correlataion”, Journal of Civil Engineering (IEB), 40(2), 181-202, 2012.

Ekolu, S.O, “Potential South African Standard Sand for Cement Mortar Testing and Research”, Proceedings of the First International Coference on Construction Materials and Structures, pp 253-260, 2014.

Ojuri, O.O., and D.O. Fijabi, “Standard sand for geotechnical engineering and geoenvironmental research in Nigeria: Igbokoda Sand”, Advances in Enviromental Research, Vol.1, no.4, 305-321, 2012.

Lameck, N.N.S, “Effect of Grinding Media Shapes on Ball Mill Performance”, Master Thesis at University of Witwatersrand, Johannesburg, 2005.

Sahoo, A., “Simulation Studies on Energy Requirement, Work Input and Grindability of Ball Mill”, International Journal of Emerging Technology and Advanced Engineering, Volume 4, Issue 2, February 2014, (ISSN 2250-2459, ISO 9001:2008), website:

Fuerstenau D.W., and J.J. Lutch, “The Effect of Ball Size on the Energy Efficiency of Hybrid High Pressure Roll Mill Ball Mill Grinding”, Powder Technology, 105 (1-3), 199-204, 1999.

Kotake, N., K., Daibo, T., Yamamoto, and Y., Kanda, “Experimental Investigation on a Grinding Rate Constant of Solid Materials by a Ball Mill – Effect of Ball Mill Diameter and Feed Size”, Powder Technology, 143-144, 2004.

Magdalinovic, N., Trumic, M., and Trumic, G., “The Optimal Ball Diameter in a Mill”, Physicochemical Problems of Mineral Processing, 48 (2), 329-339, ISSN 2084-4735, Serbia, 2012.

Dunlop, Heather, Computing the Sphericity and Roundness of Rock, website (July 2016)

Wadell, H, “Volume, Shape, and Roundness of Rock Particles”, The Journal of Geology, 40(5), 443-451, 1932.

Francioli, DM., “Effect of Operational Variables on Ball Milling”, Universidade Federal do Rio de Janeiro, Brazil, 2015.

Smith, Graham T., “Industrial Metrology, Surfaces and Roundness”, Springer-Verlag, London Limited, 2002.

“Standard Specification for Standard Sand”, ASTM C778-13



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Center for Material and Technical Product (B4T)

Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.

Email :

Telp : +62-22-2504088

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats