Pembuatan Prekursor Serat Karbon dari Lignin Limbah Black Liquor

Silvia Mar’atus Shoimah, Mardiyati Mardiyati, Steven Steven, Arif Basuki


Carbon fiber precursor is a raw material required to produce carbon fiber and it spends around 51% of the manufacturing total cost of carbon fiber. Lignin is the second most abundant natural polymer in the world and has the potential to be utilized as a precursor of carbon fiber due to its high amount of carbon content, which reaches 68%. In this research, lignin which was extracted from black liquor waste was then utilized for the preparation of carbon fiber precursor. Extracted lignin was blended with polyvinyl alcohol (PVA) with varied concentration of 0%, 10%, 20%, 30%, 40%, 50% (wt%) and prepared as fiber using wet spinning method. Tensile strength of lignin fiber was determined based on ASTM D-3882 standard. SEM characterization was conducted to evaluate the morphology of lignin fiber. Moreover, TGA characterization was conducted to evaluate the thermal properties and carbon yield of lignin/PVA fiber, respectively. The result showed that the highest tensile strength of 633.29 MPa was achieved at 50% of lignin/PVA concentration. The thermal resistance of lignin fiber tended to improve with the increase of lignin concentration. This result showed that the lignin/PVA fiber has a great potential to be used as a carbon fiber precursor.

Prekursor serat karbon merupakan bahan baku yang digunakan dalam pembuatan serat karbon dan menghabiskan sekitar 51% dari total biaya produksi serat karbon. Lignin merupakan polimer hayati paling melimpah kedua di bumi dan sangat potensial untuk dimanfaatkan menjadi prekursor serat karbon karena memiliki kandungan karbon yang tinggi mencapai 68%. Pada penelitian ini, dilakukan pembuatan prekursor serat karbon yang berbahan dasar lignin hasil pengolahan limbah black liquor. Lignin diekstraksi dari limbah black liquor dengan menggunakan metode asidifikasi. Lignin yang telah diekstraksi selanjutnya dicampur dengan polivinil alkohol (PVA) dengan variasi konsentrasi sebesar 0%, 10%, 20%, 30%, 40%, 50% (w/w) menggunakan metode wet spinning. Pengujian tarik serat lignin/PVA dilakukan dengan mengacu pada standar ASTM D-3882. Karakterisasi SEM dilakukan untuk mengetahui morfologi serat yang dihasilkan. Karakterisasi TGA dilakukan untuk mengetahui sifat termal dan carbon yield dari serat lignin/PVA. Berdasarkan hasil pengujian yang dilakukan, kekuatan serat lignin tertinggi yang dihasilkan adalah sebesar 633,29 MPa yang diperoleh oleh serat lignin/PVA dengan konsentrasi lignin sebesar 50%. Makin tinggi kandungan lignin akan menghasilkan serat lignin dengan kekuatan tarik dan ketahanan termal yang makin tinggi pula. Berdasarkan hasil pengujian yang telah dilakukan dapat disimpulkan bahwa serat lignin/PVA yang dihasilkan sangat berpotensi untuk dimanfaatkan sebagai prekursor serat karbon.


black liquor, ekstraksi, lignin, prekursor serat karbon, serat lignin

Full Text:



B. A. Newcomb, “Composites: Part A Processing, Structure, and Properties of Carbon Fibers”, Compos. Part A, vol. 91, pp. 262–282, 2016.

G. Editors, J. F. Stanzione, and I. I. I. Rowan, “Special Issue: Sustainable Polymers and Polymer Science Dedicated to the Life and Work of Richard P. Wool Special Issue: Sustainable Polymers and Polymer Science Dedicated to the Life and Work of Richard P . Wool”, 2016.

B. A. Newcomb, “Processing , structure , and properties of carbon fibers”, Compos. Part A, no. October, 2016.

D. D. L. Chung, Carbon Fiber Composites.1994.

O. Hosseinaei, D. P. Harper, J. J. Bozell, and T. G. Rials, “Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends”, 2017.

“Global Demand for Carbon Fiber from 2010 to 2022,” 2019. [Online]. source:, 2019.

H. Kleinhans, “Development of Lignin Carbon Fibers: Evaluation of the Carbonization Process”, vol. 43965, pp. 1–7, 2016.

E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spçrl, and M. R. Buchmeiser, “Carbon Fibers: Precursor Systems , Processing , Structure , and Properties Angewandte,” pp. 2–39, 2014.

H. Mainka et al., “Lignin – an Alternative Precursor for Sustainable and Cost-Effective Automotive Carbon Fiber,” Integr. Med. Res., vol. 4, no. 3, pp. 283–296, 2015.

S. Vincent et al., “Regenerated Cellulose and Willow Lignin Blends as Potential Renewable Precursors for Carbon Fibers”, ACS Sustain. Chem. Eng., vol. 6, pp. 5903–5910, 2018.

W. Fang, S. Yang, X. Wang, T. Yuan, and R. Sun, “Manufacture and Application of Lignin-Based Carbon Fibers (LCFs) and Lignin-Based Carbon Nanofibers (LCNFs)”, 2018.

I. Korbag, “Studies on the Formation of Intermolecular Interactions and Structural Characterization of Polyvinyl Alcohol / Lignin Film”, no. February, 2019.

A. Bengtsson and J. Bengtsson, “Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions”, no. April, 2019.

M. C. Chen, “All Rights Reserved. However, in Accordance with the,” 2014.

F. Ohman, “Separation of Lignin and Hemicellulose from Black Liquor”, AFORE Work. Stock., 2011.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Center for Material and Technical Product (B4T)

Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.

Email :

Telp : +62-22-2504088

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats