PENGARUH ARAH SEL SURYA BERDASAR MATA ANGIN TERHADAP KINERJANYA

Rifky Rifky, Dan Mugisidi, Agus Fikri, Mohammad Mujirudin, Arry Avorizano

Abstract


Pemanfaatan energi matahari yang mengubah energi cahayanya menjadi listrik melalui sistem sel surya dan aplikasinya dalam bangunan sangat tepat. Penempatan panel surya pada bangunan di atap, dinding, kaca, atau fasade. Posisi panel surya dimaksudkan untuk mendapatkan sebanyak mungkin pancaran cahaya matahari. Salah satu faktor yang memberikan kontribusi terhadap kinerja sel surya adalah posisi jatuhnya cahaya matahari di atas permukaan modul sel. Sel surya mendapatkan radiasi yang maksimal ketika cahaya matahari jatuh tegak lurus. Metodologi yang digunakan dalam penelitian ini adalah metode eksperimental. Panel surya dihadapkan ke arah timur, utara, dan barat. Hasil penelitian ini mendapatkan daya luaran terbesar sel surya di atap pada arah utara yaitu 25,49 W. Efisiensi terbesar sel surya di atap pada arah barat yaitu 13,91%. Perbedaan kinerja antara sel surya di atap dengan  di dinding lebih signifikan pada penempatan menghadap ke utara. Nilai listrik yang diakumulasi yang disimpan dalam baterai adalah sebesar 5,35 kWh pada panel surya yang ditempatkan di atas dengan arah ke utara.

Keywords


surya, sel surya, atap, dinding

Full Text:

PDF

References


Widiasanti, A. Ayu, and H. Hermawan, “Analisis Penempatan Sel Surya Pada Atap Setengah Lingkaran Sebagai Aplikasi Sistem Tenaga Off Grid,” Transient, vol. II, no. 3, pp. 791–798, 2013.

F. Afif and A. Martin, “Tinjauan Potensi dan Kebijakan Energi Surya di Indonesia,” J. Engine Energi, Manufaktur, dan Mater., vol. 6, no. 1, p. 43, 2022, doi: 10.30588/jeemm.v6i1.997.

S. Armstrong and W. G. Hurley, “A thermal model for photovoltaic panels under varying atmospheric conditions,” Appl. Therm. Eng., vol. 30, no. 11–12, pp. 1488–1495, 2010, doi: 10.1016/j. applthermaleng.2010.03.012.

J. Kaldellis and D. Zafirakis, “Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period,” Energy, vol. 38, no. 1, pp. 305–314, 2012, doi: 10.1016/j.energy.2011.11.058.

E. Sánchez and J. Izard, “Performance of photovoltaics in non-optimal orientations: An experimental study,” Energy Build., vol. 87, pp. 211–219, 2015, doi: 10.1016/j.enbuild.2014.11.035.

C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: A review,” Sensors, vol. 9, no. 5, pp. 3875–3890, 2009, doi: 10.3390/s90503875.

M. Kacira, M. Simsek, Y. Babur, and S. Demirkol, “Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey,” Renew. Energy, vol. 29, no. 8, pp. 1265–1275, 2004, doi: 10.1016/j.renene.2003.12.014.

E. Biyik et al., “A key review of building integrated photovoltaic (BIPV) systems,” Eng. Sci. Technol. an Int. J., vol. 20, no. 3, pp. 833–858, 2017, doi: 10.1016/j.jestch.2017.01.009.

B. P. Jelle, C. Breivik, and H. Drolsum Røkenes, “Building integrated photovoltaic products: A state-of-the-art review and future research opportunities,” Sol. Energy Mater. Sol. Cells, vol. 100, no. 7465, pp. 69–96, 2012, doi: 10.1016/j.solmat.2011. 12.016.

Y. Wang, W. Tian, J. Ren, L. Zhu, and Q. Wang, “Influence of a building’s integrated-photovoltaics on heating and cooling loads,” Appl. Energy, vol. 83, no. 9, pp. 989–1003, 2006, doi: 10.1016/j. apenergy.2005.10.002.

A. Kane and V. Verma, “Performance enhancement of building integrated photovoltaic module using thermoelectric cooling,” Int. J. Renew. Energy Res., vol. 3, no. 2, pp. 320–324, 2013.

R. A. Agathokleous and S. A. Kalogirou, “Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics,” Renew. Energy, vol. 89, pp. 743–756, 2016, doi: 10.1016/j.renene. 2015.12.043.

B. P. Jelle, “Building integrated photovoltaics: A concise description of the current state of the art and possible research pathways,” Energies, vol. 9, no. 1, pp. 1–30, 2016, doi: 10.3390/en9010021.

T. Zhang, M. Wang, and H. Yang, “A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems,” Energies, vol. 11, no. 11, 2018, doi: 10.3390/ en11113157.

B. P. Jelle and C. Breivik, “State-of-the-art building integrated photovoltaics,” Energy Procedia, vol. 20, no. 1876, pp. 68–77, 2012, doi: 10.1016/j.egypro.2012.03.009.

C. Good, I. Andresen, and A. G. Hestnes, “Solar energy for net zero energy buildings - A comparison between solar thermal, PV and photovoltaic-thermal (PV/T) systems,” Sol. Energy, vol. 122, no. 2015, pp. 986–996, 2015, doi: 10.1016/j.solener.2015.10. 013.

V. Delisle and M. Kummert, “A novel approach to compare building-integrated photovoltaics/thermal air collectors to side-by-side PV modules and solar thermal collectors,” Sol. Energy, vol. 100, pp. 50–65, 2014, doi: 10.1016/j.solener.2013.09. 040.

G. Tsalikis and G. Martinopoulos, “Solar energy systems potential for nearly net zero energy residential buildings,” Sol. Energy, vol. 115, no. 2015, pp. 743–756, 2015, doi: 10.1016/j.solener.2015.03.037.

A. Naveen Chakkaravarthy, M. S. P. Subathra, P. Jerin Pradeep, and N. Manoj Kumar, “Solar irradiance forecasting and energy optimization for achieving nearly net zero energy building,” J. Renew. Sustain. Energy, vol. 10, no. 3, 2018, doi: 10.1063/1.5034382.

H. Feng, X. Tian, S. Cao, J. Zhao, and S. Deng, “Match performance analysis for a solar-driven energy system in net zero energy building,” Energy Procedia, vol. 88, pp. 394–400, 2016, doi: 10.1016/j.egypro. 2016.06.010.

S. K. Sharma, “Zero energy building envelope components: A review,” Int. J. Eng. Res. Appl., vol. 3, no. 2, pp. 662–675, 2013.

A. D. Jones and C. P. Underwood, “A thermal model for photovoltaic systems,” Sol. Energy, vol. 70, no. 4, pp. 349–359, 2001,doi:10.1016/S0038-092X(00)001493.

F. Dincer and M. E. Meral, “Critical Factors that Affecting Efficiency of Solar Cells,” Smart Grid Renew. Energy, vol. 01, no. 01, pp. 47–50, 2010, doi: 10.4236/sgre.2010. 11007.

R. Gaos, Yogi Sirodz, “Pengembangan Model Pendingin Kabin City Car Bertenaga Surya Menggunakan Photovoltaics ( PV ) dan Thermoelectric ( TEC ),” vol. 10, no. 1, pp. 34–40, 2019.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, First. Chichester, West Sussex: John Wiley & Sons,2011.doi:10.1002/9780470974704.

S. H. Yoo and E. T. Lee, “Efficiency characteristic of building integrated photovoltaics as a shading device,” Build. Environ., vol. 37, no. 6, pp. 615–623, 2002, doi: 10.1016/S0360-1323(01)00071-3.

A. Hasyim, Jatmiko, “Daya Keluaran Panel Sel Surya,” Simp. Nas. RAPI XI FT UMS, pp. 52–57, 2012.




DOI: http://dx.doi.org/10.37209/jtbbt.v11i1.213

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Address:

Center for Material and Technical Product (B4T)

Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.

Email : jurnal.tbbt@b4t.go.id

Telp : +62-22-2504088

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats