OPTIMIZING HYDROGEN PRODUCTION FROM THE PHOTOVOLTAIC-POWERED ALKALINE WATER ELECTROLYZER
Abstract
Keywords
Full Text:
PDFReferences
Dewan Energi Nasional, “Bauran Energi Nasional 2020.” 2020.
Kementerian ESDM Republik Indonesia, “Capaian Kinerja 2020 & Program 2021.” 2021.
International Energy Agency, “Renewables 2020: Analysis and forecast to 2025.” 2020.
H. Tributsch, “Photovoltaic hydrogen generation,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 5911–5930, Nov. 2008, doi: 10.1016/j.ijhydene.2008.08.017.
M. Gül and E. Akyüz, “Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification,” Energies, vol. 13, no. 11, p. 2997, Jun. 2020, doi: 10.3390/en13112997.
M. Ergin Şahin, “A photovoltaic powered electrolysis converter system with maximum power point tracking control,” Int. J. Hydrog. Energy, vol. 45, no. 16, pp. 9293–9304, Mar. 2020, doi: 10.1016/j.ijhydene.2020.01.162.
P. Widiatmoko, T. Bustomi, M. M. Ikhsan, R. E. Ahmad, I. Nurdin, and H. Devianto, “Pemanfaatan Sistem Hibrid Fotovoltaik – PLN Pada Elektrolisis Kontinyu untuk Menghasilkan Hidrogen,” J. Teknol. Bahan Dan Barang Tek., vol. 10, no. 2, Dec. 2020, doi: 10.37209/jtbbt.v10i2.184.
P. Widiatmoko, H. Devianto, I. Nurdin, S. F. Khairunnisa, and M. I. Rafi, “Potency of Solar Hydrogen Generation System in Urban Area: Case Study of Bandung City,” J. Teknol. Bahan Dan Barang Tek., vol. 6, no. 2, p. 49, Dec. 2016, doi: 10.37209/jtbbt.v6i2.69.
Muhammad Ali Baig, “P&O based MPPT algorithm Tester.” 2021. Accessed: Nov. 24, 2021. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/63406-p-o-based-mppt-algorithm-tester
K. W. Harrison, R. Remick, and G. D. Martin, “Hydrogen Production: Fundamentals and Case Study Summaries; Preprint”.
Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” Int. J. Hydrog. Energy, vol. 28, no. 1, pp. 21–33, Jan. 2003, doi: 10.1016/S0360-3199(02)00033-2.
A. Ursua, L. M. Gandia, and P. Sanchis, “Hydrogen Production from Water Electrolysis: Current Status and Future Trends,” Proc. IEEE, vol. 100, no. 2, pp. 410–426, Feb. 2012, doi: 10.1109/JPROC.2011.2156750.
A. Amir, A. Amir, H. S. Che, A. Elkhateb, and N. A. Rahim, “Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems,” Renew. Energy, vol. 136, pp. 1147–1163, Jun. 2019, doi: 10.1016/j.renene.2018.09.089.
G. Wu, X. Ruan, and Z. Ye, “Nonisolated High Step-Up DC–DC Converters Adopting Switched-Capacitor Cell,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 383–393, Jan. 2015, doi: 10.1109/TIE.2014.2327000.
L. J. Jeremy, C. A. Ooi, and J. Teh, “Non-isolated conventional DC-DC converter comparison for a photovoltaic system: A review,” J. Renew. Sustain. Energy, vol. 12, p. 013502, 2020.
S. J. Chiang, Hsin-Jang Shieh, and Ming-Chieh Chen, “Modeling and Control of PV Charger System with SEPIC Converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009, doi: 10.1109/TIE.2008.2005144.
DOI: http://dx.doi.org/10.37209/jtbbt.v11i2.295
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Address:
Center for Material and Technical Product (B4T)
Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.
Email : jurnal.tbbt@b4t.go.id
Telp : +62-22-2504088
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.