OPTIMIZING HYDROGEN PRODUCTION FROM THE PHOTOVOLTAIC-POWERED ALKALINE WATER ELECTROLYZER

Pramujo Widiatmoko, Hary Devianto, Habibil Ghifary, Fran Felix Nurdiansyah, J.F. Simorangkir

Abstract


Energy transition has arisen its attention towards hydrogen technology. Green hydrogen can be produced from renewable energy sources such as photovoltaic (PV) through water electrolysis. However, its efficiency needs to be improved due to the intermittent nature of the remote microgrids. This study focuses on the design of SEPIC DC/DC converter and alkaline water electrolytic cells configuration on a 175 Wp polycrystalline silicon PV module. A homemade alkaline water electrolyzer of 3 M KOH was used and modeled numerically on Simulink MATLAB software. The converter and electrolytic cells configuration were designed for 1000, 800, 600 and 400 W/m2 solar irradiances. The results indicate that the required inductor decreased from 2.2 mH to 1.1 mH while the required capacitor increased from 10 mF to 27 mF as the solar irradiance increased. In a dynamic condition, the converter efficiency reached a maximum of 94.35%. Further, hydrogen production achieves 4.81 to 5.93 kg-H2/year as the installed electrolytic cell’s capacity increased from 70.2 to 174.9 W. The Levelized Cost of Hydrogen under unlimited photovoltaic power capacity is 13.08 USD/ kg-H­2

Keywords


Hydrogen Production; Photovoltaic; Alkaline Electrolyte; Performance

Full Text:

PDF

References


Dewan Energi Nasional, “Bauran Energi Nasional 2020.” 2020.

Kementerian ESDM Republik Indonesia, “Capaian Kinerja 2020 & Program 2021.” 2021.

International Energy Agency, “Renewables 2020: Analysis and forecast to 2025.” 2020.

H. Tributsch, “Photovoltaic hydrogen generation,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 5911–5930, Nov. 2008, doi: 10.1016/j.ijhydene.2008.08.017.

M. Gül and E. Akyüz, “Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification,” Energies, vol. 13, no. 11, p. 2997, Jun. 2020, doi: 10.3390/en13112997.

M. Ergin Şahin, “A photovoltaic powered electrolysis converter system with maximum power point tracking control,” Int. J. Hydrog. Energy, vol. 45, no. 16, pp. 9293–9304, Mar. 2020, doi: 10.1016/j.ijhydene.2020.01.162.

P. Widiatmoko, T. Bustomi, M. M. Ikhsan, R. E. Ahmad, I. Nurdin, and H. Devianto, “Pemanfaatan Sistem Hibrid Fotovoltaik – PLN Pada Elektrolisis Kontinyu untuk Menghasilkan Hidrogen,” J. Teknol. Bahan Dan Barang Tek., vol. 10, no. 2, Dec. 2020, doi: 10.37209/jtbbt.v10i2.184.

P. Widiatmoko, H. Devianto, I. Nurdin, S. F. Khairunnisa, and M. I. Rafi, “Potency of Solar Hydrogen Generation System in Urban Area: Case Study of Bandung City,” J. Teknol. Bahan Dan Barang Tek., vol. 6, no. 2, p. 49, Dec. 2016, doi: 10.37209/jtbbt.v6i2.69.

Muhammad Ali Baig, “P&O based MPPT algorithm Tester.” 2021. Accessed: Nov. 24, 2021. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/63406-p-o-based-mppt-algorithm-tester

K. W. Harrison, R. Remick, and G. D. Martin, “Hydrogen Production: Fundamentals and Case Study Summaries; Preprint”.

Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” Int. J. Hydrog. Energy, vol. 28, no. 1, pp. 21–33, Jan. 2003, doi: 10.1016/S0360-3199(02)00033-2.

A. Ursua, L. M. Gandia, and P. Sanchis, “Hydrogen Production from Water Electrolysis: Current Status and Future Trends,” Proc. IEEE, vol. 100, no. 2, pp. 410–426, Feb. 2012, doi: 10.1109/JPROC.2011.2156750.

A. Amir, A. Amir, H. S. Che, A. Elkhateb, and N. A. Rahim, “Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems,” Renew. Energy, vol. 136, pp. 1147–1163, Jun. 2019, doi: 10.1016/j.renene.2018.09.089.

G. Wu, X. Ruan, and Z. Ye, “Nonisolated High Step-Up DC–DC Converters Adopting Switched-Capacitor Cell,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 383–393, Jan. 2015, doi: 10.1109/TIE.2014.2327000.

L. J. Jeremy, C. A. Ooi, and J. Teh, “Non-isolated conventional DC-DC converter comparison for a photovoltaic system: A review,” J. Renew. Sustain. Energy, vol. 12, p. 013502, 2020.

S. J. Chiang, Hsin-Jang Shieh, and Ming-Chieh Chen, “Modeling and Control of PV Charger System with SEPIC Converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009, doi: 10.1109/TIE.2008.2005144.




DOI: http://dx.doi.org/10.37209/jtbbt.v11i2.295

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Address:

Center for Material and Technical Product (B4T)

Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.

Email : jurnal.tbbt@b4t.go.id

Telp : +62-22-2504088

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats