Pemodelan dan Simulasi Distribusi Muatan Pembawa Ionik pada Zat Padat Anisotropik Fiber Dua Dimensi

Susanto Sigit Rahardi


One of important aspects in material engineering is the effect of morphology on the properties of material. In lithium-ion batteries technology, morphology of active material at electrode influences the propagation of ionic charge carrier inside the batteries.  In this paper, the properties of a solid state material consisting of an anisotropic fiber granules where ions propagate were studied. The propagation mechanism is difusion process and affected by an external electric field on the material. Mathematical modelling and simulation was made to describe the influence of the randomness of anisotropic fiber granules on the charge distribution. The result of simulation indicates that the tortuosity decreases ionic migration.

Salah satu aspek penting dalam rekayasa material adalah pengaruh morfologi terhadap berbagai sifat bahan. Dalam teknologi baterai lithium-ion, morfologi bahan aktif pada elektroda mempengaruhi perambatan ion-ion pembawa muatan di dalamnya. Pada tulisan ini, ditinjau zat padat yang di dalamnya tersusun dari granul-granul anisotropic fiber sebagai tempat perambatan ion-ion pembawa muatan. Mekanisme perambatan ion pembawa muatan pada granul-granul tersebut adalah proses difusi dan medan listrik luar. Telah dibuat model matematis dan simulasi untuk mendeskripsikan pengaruh keacakan granul-granul fiber terhadap perubahan distribusi ion pembawa muatan. Hasil simulasi mengindikasikan bahwa berlikunya (tortuosity) jalur migrasi ion-ion  mengurangi perambatan ion-ion pembawa muatan.


distribusi muatan, difusi ionik, migrasi ionik, keacakan, tortuosity

Full Text:



M. Schroeder, S. Glatthaar, and J. R. Binder, 2011, “Influence of Spray Granulation on the Properties of Wet Chemically Synthesized Li 1.3 Ti 1.7 Al 0.3 (PO4)3 (LTAP) Powders,” Solid State Ionics, vol. 201, no. 1, pp. 49–53.

H. Lee, P. Muralidharan, C. M. Mari, R. Ruffo, and D. Kyung, 2011, “Nanorods As a High Power Positive Electrode for Rechargeable Li-Ion Batteries”, J. Power Sources, vol. 196, no. 24, pp. 10712–10716.

Thorat, 2009 ”Quantifying Tortuosity In Porous Li-Ion Battery Materials”, Journal of Power Sources, 188, 592.

Martin, 2013 “ Tortuosity Anisotropy In Lithium-Ion Battery Electrodes”, Advanced Energy Materials, DOI: 10. 1002/aenm.201301278

Hutzenlaub, “FIB/SEM-Based Calcu-lation of Tortuosity In A Porous LiCoO2 Cathode For a Li-Ion Battery”, Electro-chemistry Communication 27, 77-80, 20

Xioojian, 2013, “ Direct Observation of Lithium-ion Transport Under an Electrical Field in LixCoO2 Nanograins”, Scientific Reports DOI: 10.1038/srep 01084.

Bae, Erdonmez, Halloran, Chiang, 2013 “Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance”, Adv.Mater, 25, 1254-1258.

Vijayaraghavan, 2012 “An Analytical Method to Determine Tortuosity in Rechargeable Battery Electrode”, Journal of the Electrochemical Society, 159 (5) A548-A552.

Myonggu Park, 2010, "A Review of Conduction Phenomena in Li-Ion Batteries", Journal of Power Sources, pp26.

Joachim Maier, 2014, ”Pushing to the Limit: Charge Carrier Chemistry in Extremely Small System”, Chemistry Material, 26, 348-360.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Center for Material and Technical Product (B4T)

Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.

Email :

Telp : +62-22-2504088

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats