Pengaruh Pemanasan pada Proses Pelarutan Binder terhadap Kinerja Katoda pada Sel Baterai Ion-Litium

Daniel Fajar Puspita


Research on the effect of heating during binder dissolution process on the performance of cathode for lithium-ion cell had been done. This research is a part of coating technology which is applied on lithium-ion battery. The objective of this research is to observe the effect of heating on dissolution process of binder on the binder solution, cathode sheet, and the cell itself. Slurry was prepared by using LiMn2O4 as an active substance, acetylene black as a conductive, NMP as solvent and PVDF as a binder. Binder dissolution was performed by utilizing heatable magnetic stirrer at temperature variations of 25, 40 and 80 °C. The results showed that the color of binder solution made at 40 and 80 °C were yellow transparent whereas that made at 25 °C was cloudy white transparent.  The best binding strength and flexibility of cathode was obtained from 25 °C trial. The best quality cell was obtained from 25 °C trial which produced the lowest internal resistance with decent capacity. It can be concluded from this expriment that heating during dissolution process of binder affected the quality of binder solution, cathode sheet, and the cell. In general, of 3 heating temperature variable, binder dissolution at 25 °C give the best result.

Penelitian mengenai pengaruh pemanasan pada proses pelarutan binder terhadap kinerja katoda pada sel baterai ion-lithium telah dilakukan. Penelitian ini merupakan bagian dari teknologi coating yang diterapkan pada aplikasi baterai ion-lithium. Penelitian ini bertujuan untuk mengetahui pengaruh pemanasan pada proses pelarutan binder terhadap larutan binder, kualitas fisik katoda dan kualitas sel baterai ion-lithium yang dibuat menggunakan larutan binder tersebut. Slurry untuk pembuatan katoda menggunakan bahan LiMn2O4 sebagai bahan aktif, acetylene black sebagai konduktif, NMP sebagai pelarut dan PVDF sebagai binder. Pelarutan binder dilakukan dengan menggunakan magnetic stirrer berpemanas dengan variasi suhu 25, 40 dan 80 °C. Dari hasil percobaan, didapat hasil bahwa proses pelarutan pada suhu 40 dan 80 °C menghasilkan larutan binder berwarna jernih kekuningan, sedangkan untuk variasi 25 °C menghasilkan larutan putih transparan. Daya rekat dan fleksibilitas paling baik diperoleh dari lembaran katoda dengan variasi suhu 25 °C. Untuk kualitas sel baterai, baterai yang paling baik didapat dari variasi 25 °C dengan tahanan dalam paling kecil dan kapasitas yang baik. Dari percoban ini dapat disimpulkan bahwa pemanasan saat pelarutan binder mempengaruhi kualitas larutan binder, kualitas fisik katoda dan kualitas sel baterai ion-lithium yang dihasilkan. Dari 3 macam variasi pemanasan yang dilakukan, pelarutan binder pada suhu 25 °C memberikan hasil yang paling baik secara keseluruhan.


teknologi coating, pelarutan binder, katoda ion-litium

Full Text:



T.D. Goncalves, L. Pel, J.D. Rodrigues, “Influence of Paints on Drying and Salt Distribution Processes in Porous Building Materials,” J. Construction and Building Materials Vol. 23 pp. 1751–1759, 2009. doi:10.1016/j.conbuildmat.2008.08.006

D. Cahyadi, D.F. Puspita,” Pengembangan Formulasi Cat Tembok Emulsi Berbahan Acrylic untuk Meningkatkan Daya Saing IKM,” Jurnal Teknologi Bahan dan Barang Teknik Vol. 4 No. 1, pp. 1-6, 2014

M.H. Nazir, Z. Khan, K. Stokes, “Modelling of Metal-Coating Delamination Incorporating Variable Environmental Parameters,” Journal of Adhesion Science and Technology, Vol. 29:5, pp. 392-423, 2015. doi:10.1080/01694243.2014.990200

Y. S. Lee, T. Gershon, T. K. Todorov, W. Wang, M. T. Winkler, M. Hopstaken, O. Gunawan, and J. Kim, “Atomic Layer Deposited Aluminum Oxide for Interface Passivation of Cu2ZnSn(S,Se)4 Thin-Film Solar Cells,” Adv. Energy Mater, pp. 1–5, 2016. doi:10.1002/aenm.201600198

D. Mohanty, A. S. Sefat, E. A. Payzant, J. Li, D. L. Wood, and C. Daniel, “Unconventional Irreversible Structural Changes in a High-Voltage Li-Mn-rich Oxide for Lithium-Ion Battery Cathodes,” J. Power Sources, vol. 283, pp. 423-428, 2015.doi:10.1016/j.jpowsour. 2015.02.087

B. Bitsch, J. Dittmann, M. Schmitt, P. Scharfer, W. Schabel, and N. Willenbacher, “A Novel Slurry Concept for The Fabrication of Lithium-Ion Battery Electrodes with Beneficial Properties,” J. Power Sources, vol. 265, pp. 81-90, 2014.doi:10.1016/j.jpowsour.2014.04.115

B. Diouf and R. Pode, “Potential of Lithium-ion Batteries in Renewable Energy,” Renew. Energy, vol. 76, pp. 375-380, 2015.doi:10.1016/j.renene.2014.11.0 58

V. Barsykov and K. National, “The Influence of Polymer Binders on the Performance of Cathodes for Lithium-Ion Batteries,” Scientific Journal of Riga Technical University, vol. 21, pp. 67–71, 2010.

P. Paolo, M. Carewska, C. Cento, and A. Masci, “Poly Vinyl Acetate Used as A Binder for The Fabrication of a LiFePO4-Based Composite Cathode for Lithium-ion Batteries,” Electrochim. Acta, vol. 150, pp. 129–135, 2014.doi:10.1016/j.electacta.2014.10.123

B. Ludwig, Z. Zheng, W. Shou, Y. Wang, and H. Pan, “Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries,” Nat. Publ. Gr., pp. 1–10, 2016.doi:10.1038/srep23150

D. L. W. Iii, J. Li, and C. Daniel, “Prospects for Reducing the Processing Cost of Lithium Ion Batteries,” J. Power Sources, vol. 275, pp. 234–242, 2015.doi:10.1016/j.jpowsour.2014.11.019

D. Liu, L. Chen, T. Liu, T. Fan, E. Tsou, and C. Tiu, “An Effective Mixing for Lithium Ion Battery Slurries,”Advances in Chemical Engineering and Science, 4, pp. 515-528, 2014. Doi:10.4236/aces.2014.

D.F. Puspita, S. S. Rahardi, “Homogenitas Produksi Baterai Lithium-Ion Berdasarkan Varians Kapasitas Charge, Kapasitas Discharge dan Efisiensi Charge-Discharge”, Jurnal Teknologi Bahan dan Barang Teknik Vol. 6 No. 1 Juni 2016

F. Liu, M. R. M. Abed, and K. Li, “Preparation and Characterization of Poly(vinylidene fluoride)( PVDF)-based Ultrafiltration Membranes Using Nano-Al2O3,” Journal of Membrane Science, vol. 366, pp. 97–103, 2011.doi:10.1016/j.memsci.2010.09.044

A. Marongiu, J. Drillkens, P. Sinhuber, D. U. Sauer, E. E. Conversion, S. S. Group, and E. O. N. Erc, “A Critical Overview of Definitions and Determination Techniques of The Internal Resistance Using Lithium-Ion , Lead-Acid , Nickel Metal-Hydride Batteries and Electrochemical Double-Layer Capacitors As Examples,” J. Power Sources, vol. 296, pp. 365–376, 2015. doi: 10.1016/j.jpowsour.2015.07.073

V. A. Online, B. Luo, X. Wang, Y. Wang, and L. Li, “Fabrication, Characterization, Properties and Theoretical Analysis of Ceramic/PVDF Composite Flexible Films with High Dielectric Constant and Low Dielectric Loss,” J. Mater. Chem. A, vol. 2, pp. 510–519, 2014.doi:10.1039/c3ta141 07a



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Center for Material and Technical Product (B4T)

Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.

Email :

Telp : +62-22-2504088

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats