Laboratory Scale Production of Lithium Manganese Oxide as Active Material of Lithium-Ion Batteries in Sol-Gel Method Assisted by Local Biomass

Muhammad Ilham Bayquni, Susanto Sigit Rahardi, Elsy Rahimi Chaldun, Bambang Sunendar Purwasasmita

Abstract


Experimental and theoretical studies of the production of lithium manganese oxide (LiMn2O4) using sol-gel method have been carried out on a larger scale than previous studies.  The purpose of this investigation was to observe sample behavior along the synthesis process to be considered in further scale-up production of lithium manganese oxide, based on the sol-gel method. Calcination products were analyzed by TGA and crystalline phase formation analyzed by XRD. LiMn2O4 spinel phase was formed at 600oC. SEM showed some interesting morphology. Xerogel swelling was observed overwhelmingly during drying at 250oC to 300oC. Exothermic occurrence as a source of irregular and unpredictable auto combustion in the calcination process. Both phenomenon were not observed in a xerogel made with a small amount precursor. Therefore, initial mixture adjustment and additional steps were considered for production.

Keywords


lithium manganese oxide, sol-gel, crystallization mechanism, lithium ion battery cathode

Full Text:

PDF

References


Naresh Susarla; Shabbir Ahmed, “Estimating the Cost and Energy Demand of Producing Lithium Manganese Oxide for Li-Ion Batteries,” Alexandria, 2020.

A. R. Armstrong and P. G. Bruce, “Synthesis of Layered LiMnO2 as an Electrode for Rechargeable Lithium Batteries.pdf.” Nature, pp. 499–500, 1996.

Y. Sun, “Synthesis of Spinel LiMn2O4 by the Sol - Gel Method for a Cathode-Active Material in Lithium Secondary Batteries,” Am. Chem. Soc., pp. 4839–4846, 1997.

M. M. Thackeray and M. H. Rossouw, “Synthesis of Lithium-Manganese-Oxide Spinels: A Study by Thermal Analysis,” J. Solid State Chem., pp. 441–443, 1994.

O. Toprakci, H. A. K. Toprakci, Y. Li, L. Ji, L. Xue, and H. Lee, “Synthesis and Characterization of x Li2MnO3.(1-x)LiMn1/3Ni1/3Co1/3O2 Composite Cathode Materials for Rechargeable Lithium-Ion Batteries,” J. Power Sources, vol. 241, pp. 522–528, 2013.

A. Supriadi et al., Kajian Dampak Hilirisasi Mineral Mangan Terhadap Perekonomian Regional. Jakarta: Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral, 2017.

J. Jiang et al., “Synthesis of LiMn2O4 Nanoparticles Using Nano-Sized MnO2 Precursor and Their Electrochemistry Performance,” J. Nanosci. Nanotechnol., vol. 16, no. 12, pp. 12640–12643, 2016.

S. Geng, S. Geng, and Y. Zhai, “Synthesis of LiMn2O4 via High Temperature Ball Milling Process,” Mater. Manuf. Process., vol. 6914, no. April, 2017.

M. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, “High Performance LiMn2O4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries,” Am. Chem. Soc., vol. 14, pp. 993–999, 2014.

A. E. Danks, S. R. Hall, and Z. Schnepp, “The Evolution of Sol-Gel Chemistry as A Technique for Materials Synthesis,” Mater. Horizons, vol. 3, pp. 91–112, 2016.

S. S. Rahardi, “Sintesis Litium Mangan Oksida Melalui Metode Sol Gel dengan Bio Template Selulosa Bakteri Sebagai Bahan Katoda Baterai Ion Litium (Thesis Master),” Institut Teknologi Bandung, 2016.

S. S. Rahardi, “Sintesis, Sreparasi Bahan Katoda Anisotropik, Sel Baterai Ion Litium dan Pengembangannya,” 2019/04488, 2019.

Balai Besar Bahan dan Barang Teknik, “Laporan Kegiatan Penelitian - Kajian Teknologi Batere Mobil Listrik LCGC,” Bandung, 2013.

S. S. Rahardi, A. H. Daulay, S. Hidayatullah, and B. S. Purwasasmita, “Pengembangan Sintesis Serbuk Lithium Manganat untuk Bahan Katoda Batere Lithium Ion,” Pros. Semin. Nas. Keramik XII, 2013.

A. Wibowo, R. F. Indrawan, L. A. T. Wulan Asri, S. S. Rahardi, and B. S. Purwasasmita, “The Influence of Chitosan Concentration on Morphology and Conductivity of Lithium Aluminium Titanate Phosphate for Solid Electrolytes of Lithium-Ion Battery Application,” IOP Conf. Ser. Mater. Sci. Eng., vol. 509, no. 1, 2019.

M. Bianchini, F. Fauth, E. Suard, J.-B. Leriche, C. Masquelier, and L. Croguennec, “Spinel materials for Li-ion batteries: new insights obtained by operando neutron and synchrotron X-ray diffraction,” Energy Mater., pp. 1–14, 2015.

F. Dang, T. Hoshino, Y. Oaki, E. Hosono, H. Zhou, and H. Imai, “Synthesis of Li-Mn-O Mesocrystals with Ccontrolled Crystal Phases Through Topotactic Transformation of MnCO3,” Nanoscale, vol. 5, no. 6, pp. 2352–2357, 2013.

N. A. F. Abdullah and L. S. Ang, “Binding sites of Deprotonated Citric Acid and Ethylenediaminetetraacetic Ccid in the Chelation with Ba2+, Y3+, and Zr4+ and Their Electronic Properties: A Density Functional Theory Study,” Acta Chim. Slov., vol. 65, no. 1, pp. 231–238, 2018.

C. Ivander, M. I. Bayquni, and S. Rahardi, “Dehidrasi dan Dehidroksilasi Litium Mangan Oksida dari Metode Sol-Gel untuk Elektroda Baterai Ion Litium,” in Seminar Nasional B4T, 2020.




DOI: http://dx.doi.org/10.37209/jtbbt.v10i2.178

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Address:

Center for Material and Technical Product (B4T)

Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.

Email : jurnal.tbbt@b4t.go.id

Telp : +62-22-2504088

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats