KARAKTERISASI FEEDSTOCK Fe2%Ni PADA PROSES METAL INJECTION MOLDING
Abstract
Keywords
Full Text:
PDFReferences
T. Hartwig, L. Lopes, P. Wendhausen, and N. Ünal, “Metal injection molding (MIM) of NdFeB magnets,” EPJ Web Conf, vol. 75, pp. 4–7, 2014, doi: 10.1051/epjconf/20147504002.
Z. Lu, Z. Huang, S. Jiang, W. Liu, and K. Zhang, “Influencing Factors for the Microstructure and Mechanical Properties of Micro Porous Titanium Manufactured by Metal Injection Molding,” Metals (Basel), vol. 6, no. 4, pp. 1–10, 2016, doi: 10.3390/met6040083.
A. Dehghan-Manshadi, P. Yu, M. Dargusch, D. StJohn, and M. Qian, “Metal Injection Moulding of Surgical Tools, Biomaterials and Medical Devices: A review,” Powder Technol, vol. 364, pp. 189–204, 2020, doi: 10.1016/j.powtec.2020.01.073.
M. Wolff et al., “Metal injection molding (MIM) of magnesium and its alloys,” Metals (Basel), vol. 6, no. 5, pp. 1–12, 2016, doi: 10.3390/ met6050118.
S. Ahn, S. J. Park, S. Lee, S. V. Atre, and R. M. German, “Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process,” Powder Technol, vol. 193, no. 2, pp. 162–169, Mar. 2009, doi: 10.1016/j.powtec.2009.03.010.
J. Ma et al., “Microstructure and magnetic properties of Fe–79%Ni–4%Mo alloy fabricated by metal injection molding,” Powder Technol, vol. 253, pp. 158–162, 2014, doi: 10.1016/j.powtec.2013.11.011.
R. Supati, N. H. Loh, K. A. Khor, and S. B. Tor, “Mixing and characterization of feedstock for powder injection molding,” Materials Letter, vol. 46, no. April, 2000, doi: 10.1016/S0167-577X(00)00151-8.
S. Park, Y. Wu, D. F. Heaney, X. I. N. Zou, G. Gai, and R. M. German, “Rheological and Thermal Debinding Behaviors in Titanium Powder Injection Molding,” The Minerals, Metals & Materials Society and ASM International 2008, vol. 40, no. January, pp. 215–222, 2009, doi: 10.1007/s11661-008-9690-3.
B. Hausnerova, B. N. Mukund, and D. Sanetrnik, “Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: Effect of powder shape and size,” Powder Technol, vol. 312, pp. 152–158, 2017, doi: 10.1016/j.powtec.2017.02.023.
M. E. Sotomayor, A. Várez, and B. Levenfeld, “Influence of powder particle size distribution on rheological properties of 316L powder injection moulding feedstocks,” Powder Technol, vol. 200, no. 1–2, pp. 30–36, 2010, doi: 10.1016/j.powtec.2010.02.003.
R. M. German, “Progress in Titanium Metal Powder Injection Molding,” Materials, vol. 6, no. 8, pp. 3641–3662, 2013, doi: 10.3390/ma6083641.
M. D. Hayat, P. P. Jadhav, H. Zhang, S. Ray, and P. Cao, “Improving titanium injection moulding feedstock based on PEG/PPC based binder system,” Powder Technol, p. #pagerange#, 2018, doi: 10.1016/j.powtec.2018.02.043.
S. J. Park, D. Kim, D. Lin, S. J. Park, and S. Ahn, “Rheological Characterization of Powder Mixture Including a Space Holder and Its Application to Metal Injection Molding,” Metals, vol. 7, no. 4, p. 120, Mar. 2017, doi: 10.3390/met7040120.
DOI: http://dx.doi.org/10.37209/jtbbt.v11i1.288
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Address:
Center for Material and Technical Product (B4T)
Jl. Sangkuriang No.14, Bandung, 40135, INDONESIA.
Email : jurnal.tbbt@b4t.go.id
Telp : +62-22-2504088
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.